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Abstract— Estimating driver gaze accurately is critical for the
human-machine cooperative driving, but the significant facial
appearance diversions caused by background, illumination, per-
sonal characteristics, etc. pose a challenge to the generalizability
of gaze estimation models. In this paper, we propose the gener-
ative self-adversarial learning mechanism for generalized gaze
estimation that aims to learn general gaze features while elim-
inating sample-specific features and preventing cross-domain
feature over-fitting. Firstly, to reduce information redundancy,
the feature encoder is designed based on pyramid-grouped
convolution to extract a sparse feature representation from
the facial appearance. Secondly, the gaze regression module
supervises the model to learn as many gaze-relevant features
as possible. Thirdly, the adversarial image reconstruction task
prompts the model to eliminate the domain-specific features.
The adversarial learning of the gaze regression and the image
reconstruction tasks guides the model to learn only general gaze
features across domains, preventing cross-domain feature over-
fitting, enhancing the domain generalization capability. The
results of cross-domain testing of four active gaze datasets prove
the effectiveness of the proposed method. The code is available
at https://github.com/HongchengHan/GSA-Gaze

I. INTRODUCTION

Human-machine cooperative driving (HMCD) is a promis-
ing direction for the intelligent transportation system[1]. In
order to achieve effective cooperative control, the vehicle
must be capable of accurately comprehending the driver’s
intentions through various behaviors. Gaze is a crucial non-
verbal communication cue[2], through which the driver’s
attention focus can be extracted in real-time to discern his/her
driving intention, providing a foundation for cooperative
control. Accurate driver gaze estimation methods are of sig-
nificant importance for the advancement of HMCD vehicles.

Appearance-based gaze estimation methods are widely
utilized nowadays due to their ease of implementation. To
precisely estimate gaze from appearance in appearance-
based methods, a robust feature extractor is essential for
obtaining high-quality gaze feature representation from facial
or ocular images. With the rapid advancement of deep
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learning in recent years, visual feature extraction algorithms
are becoming increasingly potent, the appearance-based gaze
estimation methods have been enhanced by the integration of
deep neural networks[3]. Despite the impressive performance
of deep-learning-based gaze estimation methods on various
appearance-based gaze datasets, there still exist practical
challenges that need to be addressed. The deep neural net-
works possess formidable function fitting capabilities and are
capable of constructing intricate gaze feature representations,
yet their learning is solely driven by the training data. When
the test data and the training data differ in terms of back-
ground, illumination, and personal appearance, i.e., they are
in different domains, deep-learning-based methods exhibit a
significant performance drop in cross-domain testing.

To tackle cross-domain problems, a potential solution is
to augment the training data with more diverse samples.
Nevertheless, in vehicle scenes, due to privacy concerns and
the high cost of labeling, developers are unable to collect
customer data on a large scale. As a result, models can only
be trained on limited data, making it difficult to cover all ap-
plication scenarios. Another solution is domain adaption[4],
by modeling the dissimilarity between the target and source
domains, domain adaption enhances the performance of the
model trained on the source domain in target domain testing.
The methods based on domain adaption require only a
certain number of unlabeled samples from target domains,
reducing the cost of data acquisition and labeling. However,
they still have certain limitations. Firstly, they still require
samples from target domain, which fails to address the
fundamental issue of data acquisition. Secondly, each target
domain necessitates a distinct domain discriminator, thereby
mandating separate model training for generalization from
source to diverse target domains. These challenges render
the deployment of gaze estimation algorithms in diverse
environments a complex task.

With the above consideration, in this paper, we propose
the generative self-adversarial learning mechanism (GSAL)
to address the domain generalization problem in gaze es-
timation. The primary contributions of our work can be
summarized as follows:

• We propose a novel method for generalized gaze esti-
mation by adversarial learning of gaze regression and
facial appearance reconstruction tasks, which focuses on
general gaze features while eliminating domain-specific
features, enhancing the generalizability.

• We propose the pyramid-grouped convolution for fea-
ture encoder network to enhance the sparsity of ex-
tracted features, thereby addressing information redun-
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dancy issues encountered in general gaze pattern learn-
ing.

• Our method achieves domain generalization gaze esti-
mation across multiple target domains without any prior
information of the target domain data and requires only
one training session on the source domain for all target
domains.

II. RELATED WORK

The advancement of gaze estimation algorithms is pro-
pelled by the development of deep learning, which enhances
precision but faces limitations in domain generalization. Al-
though some domain adaptation methods have been proposed
to address this issue, they often require target samples and
are not universally applicable.

Gaze Estimation: Some researchers have adapted algo-
rithms from fundamental computer vision tasks to enhance
the accuracy of gaze estimation, e.g. Chen et al.[5] leverage
dilated convolution for gaze estimation. Some works exploit
the powerful feature extraction capabilities of deep neural
networks to explore novel challenges in the field of gaze
estimation. Cheng et al.[6] explore the two-eye asymmetry.
Bao et al.[7] leverage face and eye images to estimate the
gaze point. Zheng et al.[8] propose a gaze/head redirection
network and employ synthesized images for data augmen-
tation. These works have made significant contributions to
enhancing the baseline of gaze estimation, however, the issue
of cross-domain generalization remains unresolved.

Domain Adaption: Domain adaptive methods aim to
address the performance drop problem of machine learning
models in cross-domain testing. Yaroslav et al.[9] propose
domain adaption neural network to model the dissimilarity by
constructing the domain discriminator. Wang et al.[10] and
Kellnhoder et al.[11] propose the utilization of adversarial
learning to align features between the source and target do-
mains. Liu et al.[12] propose an assemblage of networks that
synergistically learn under the tutelage of anomalies. These
methods rely on data from the target domain, which may
not always be user-friendly. Achieving domain generalization
without utilizing samples from the target domain remains a
challenging task.

III. APPROACH

A. Purpose of Generative Self-adversarial Learning

The data-driven deep learning models extract not only
general gaze features that are applicable across domains, but
also the unique characteristics of the source domain, such
as background, illumination, and personal facial appearance,
as Fig. 1(a) and (b) show. This phenomenon is referred
to as ”cross-domain feature over-fitting”. How to extract
gaze features that are more generalizable and fewer domain-
specific features is crucial for generalized gaze estimation.

The purpose of the proposed generative self-adversarial
learning (GSAL) is to extract the common gaze features
shared by source and target domains while eliminating
domain-specific features unique to the source domain, ad-
dressing the cross-domain feature over-fitting problem. As
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Fig. 1: Purpose of generative self-adversarial learning. (a)
Cross-domain general gaze feature. Ssrc, Star1, Star2 are
the feature spaces of the source domain and two target
domains, G is the general gaze feature for all domains. (b)
Relationship of the general gaze feature and the extracted
feature when training on the source domain. S is the whole
feature space of the source domain, E indicates the extracted
feature, G refers to the general gaze feature. (c) Principle of
generative self-adversarial learning. To enhance the cross-
domain generalization capability of the model, E is expected
to match G.

Fig. 1(c) shows, the adversarial learning of the model is
driven by two tasks. First, the gaze regression task, which
expects a precise gaze regression, encouraging the model to
learn more gaze-related features, expressed as

max
E(θ)∈S,G∈S

(E(θ) ∩G) , (1)

where max (·) means to maximize the feature set, E is the
set of the extracted features, G is the set of the general
gaze features, θ refers to the learnable parameters of the
feature extractor. Second, the image reconstruction task,
which requires to reconstruct the original input image from
the extracted features, the more unique features are extracted,
the more similar the reconstructed image will be to its
origin. However, we anticipate an imprecise reconstruction,
and the more closely the reconstructed image resembles
the original, the higher penalty we impose on the feature
extractor. Therefore, in the image reconstruction task, the
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Fig. 2: Framework of generative self-adversarial learning for gaze estimation. (a) Feature encoder. (b) Gaze regression
module. GP is the global pooling layer. (c) Adversarial reconstruction module. GRL refers to the gradient reversal layer. (d)
Loss function. In the gaze regression task, the gaze regression module performs cooperative optimization with the feature
encoder, encouraging to extract more gaze-relevant features.

model is encouraged to learn as fewer unique features as
possible, which can be expressed as

min
E(θ)∈S,G∈S

(E(θ) ∪G) , (2)

where min (·) means to minimize a set.
The model appears to be adversarial in achieving these

two objectives. The gaze regression task necessitates the
model to extract a greater number of gaze features, whereas
image reconstruction incentivizes the model to extract fewer
features from samples. Through the adversarial learning,
combining Eq.1 and Eq.2, the optimization objectives of self-
adversarial learning can be summarized as

min
E(θ)∈S,G∈S

((E(θ)−G) ∪ (G− E(θ))) . (3)

It effectively measures how well E and G match, guiding
the feature encoder to acquire more generalized gaze features
and fewer domain-specific ones, thereby enhancing its capac-
ity for domain generalization without requiring any samples
from target domains.

B. Framework of GSA-Gaze

We design the GSA-Gaze based on the proposed genera-
tive self-adversarial learning mechanism. The framework is
shown in Fig. 2, GSA-Gaze comprises the feature encoder,
the gaze regression module, the adversarial reconstruction
module, and employs the self-adversarial loss for optimiza-
tion. First, the feature encoder extracts a feature map from
the input image, which is subsequently fed into both the gaze
regression and generative reconstruction modules. Second,
the gaze regression module regresses the gaze vector from the
extracted feature map. The accuracy of the gaze regression is
directly proportional to the number of features in the feature
map that are relevant to the gaze. It engages in cooperative

optimization with the feature encoder, thereby incentivizing it
to extract more gaze-relevant features. Third, the adversarial
reconstruction module reconstructs the input image from the
extracted feature map, more unique features of the input
image contained in the feature map, the more similar the
reconstructed image is to the original image. The adversarial
reconstruction module is designed to guide the model in
eliminating unique features, thus it is not expected to pre-
cisely reconstruct the input image from the extracted feature
map. In training, through the gradient reversal layer(GRL),
the gradient between the encoder and the decoder is reversed
in the back propagation, thus the feature decoder performs
adversarial optimization with the feature encoder to encour-
age extracting fewer domain-specific features.

Through the aforementioned design, under the supervision
of both gaze regression and generative reconstruction mod-
ules, the feature encoder undergoes self-adversarial learning
to acquire general gaze features while eliminating unique
ones, enhancing the domain generalization capability of the
model.

C. Pyramid-grouped Convolution Encoder

Generative self-adversarial learning mechanism focuses
on preserving the general gaze feature and removing other
information, in other words, it purifies the extracted features.
For GSA-Gaze, the input face image is information-sparse
and the gaze patterns are sparsely represented in the input
image. The dense channel connections in the standard convo-
lution operation hinder our model from obtaining the purified
feature representation. Therefore, in the design of the feature
encoder network, we propose the pyramid-grouped convolu-
tion (PGC) mechanism to address the channel connection
redundancy problem. As Fig. 3 shows, in each pyramid-
grouped convolutional block, the density of channel con-
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nection changes from dense to sparse. Compared to existing
grouped convolution[13], the kernels in the pyramid-grouped
convolution possess varying channel-wise receptive fields,
which enable the block to focus on the features of every
single channel with a longer path, providing a more sparse
feature encoding and enhancing the diagonal correlation
between channels.

We utilize the PGC blocks to reconstruct ResNet-50[14] as
ResPGC-50, which serves as our feature encoder. It extracts
the feature map from the input image, expressed as

Z = fenc(I |θenc) , (4)

where Z is the extracted feature map, fenc(·) means the
feature encoder, I indicates the input image and θenc is the
learnable parameters of the encoder.

one group 𝑔𝑛 groups 𝑔𝑛 × 𝑔𝑛+1 groups

Dense Sparse
Layer 1

Upsampling ×2

Conv 3×3
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(a)

Layer 𝑛
Layer 

𝑛 + 1

Fig. 3: Pyramid-grouped convolution. In each pyramid block,
the density of channel connection changes from dense to
sparse.

D. Self-adversarial Loss Function and Optimization

To optimize GSA-Gaze, distinct loss functions are em-
ployed for each module within the network. First, for gaze
regression module, the mean square error of the gaze vector
is used to evaluate the precision of gaze prediction, Lgaze is
calculated by

Lgaze = ∥ĝ − g∥2 , (5)

where ĝ and g are the predicted gaze vector and the ground
truth.

Second, for the generative reconstruction module, the
reconstructor is encouraged to mine the information in the
extracted feature map as much as possible, so the pixel-wise
mean square error of the generated image and the input image
is used to optimize the reconstructor, Lrec is calculated by

Lrec = ∥Î − I∥2 , (6)

where Î and I are the generated image and the input image.
Third, for the feature encoder, as Fig. 2 shows, on the one

hand, the extracted feature map is encouraged to support the
gaze regression, it is cooperatively optimized with the gaze
regression module, so Lgaze is also used for its optimization.
On the other hand, the self-adversarial learning makes it
expected to unfavorable to precise image reconstruction, it
performs the adversarial optimization with the reconstruction
module, the adversarial reconstruction loss 1−Lrec is used
for its optimization. In summary, the adversarial loss function
for the feature encoder Lenc is designed as:

Lenc = Ladv = λαLgaze + (1− λ)β(1− Lrec) , (7)

it consists of a positive gaze loss and a reversed reconstruc-
tion loss, to satisfy the self-adversarial learning. λ is a hyper
parameter used to adjust the bias of the model to the two task,
the larger λ is, the model is more biased towards extracting
more gaze-relevant features, the smaller λ is, the model is
more biased towards eliminating more unique features of
training data. λ is set to 0.6 by default. α and β are scale
coefficients, which are used to adjust Lgaze and Lrec to an
appropriate and uniform scale, the values of them depend on
the data preprocessing method. According to the above loss
function design, the optimization objectives of the network
parameters are as follows:

θ∗
reg = argmin

θreg

Lgaze(θenc,θreg), (8)

θ∗
rec = argmin

θrec

Lrec(θenc,θrec), (9)

θ∗
enc =argmin

θenc

(λαLgaze(θenc,θreg)+

(1− λ)β(1− Lrec(θenc,θrec))),
(10)

where θ∗
reg , θ∗

rec and θ∗
enc are the optimized parameters of

the gaze regressor, the image reconstructor and the feature
encoder.

IV. EXPERIMENTS

A. Experimental Setup

Data preparation: Considering the standardization of data
collection, image quality, the number of samples and the
diversity of gaze range, we choose Gaze360[11](G) and
ETH-XGaze[15](E) as the training sets. MPIIGaze[16](M)
and EyeDiap[17](D) are used as testing sets to evaluate
the domain generalization ability of models. Using these
datasets, we establish four domain generalization tasks for
our experiments: G→M, G→D, E→M, E→D. The left side
of the arrow is the source domain, and the right side of the
arrow is the target domain.
Compared methods: In order to prove the effectiveness of
the proposed method, we introduce impactful gaze estimation
methods for comparison, including RT-Gene[18], Dilated-
Net[5], CA-Net[19]. In addition, to study the domain gen-
eralization effects of generative self-adversarial learning, we
also used some domain adaption methods for comparison,
FSA-Gaze[20], UMA[21], PNP-GA[12].

B. Comparative Results

The angle difference between the estimated gaze vector
and the ground truth is used as the evaluation metric. The
comparative results are shown in Table I, it proves that
existing methods show an obvious performance drop in
cross-domain testing. In the without-adaption group, RT-
Gene and Dilated-Net even completely fail in four tasks. Our
method outperforms the compared methods in all four tasks.
In the with-adaption group, 1000 target domain samples are
allowed to be used for finetuning, so that we can perform the
domain adaption methods. With finetuning, our method show
better performance, because samples from the target domain
bring features unique to the target domain, enhancing the
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TABLE I: Comparative Results on the domain-generalized gaze estimation task across Gaze360(G), ETH-XGaze(E),
MPIIGaze(M) and EyeDiap(D).

Adaption Models Target domain samples Gaze angle difference ↓
G→M G→D E→M E→D

w/o

RT-Gene[18] - 22.70° 36.59° 29.84° 31.20°
Dilated-Net[5] - 18.45° 23.88° 10.29° 16.74°

CA-Net[19] - 12.05° 15.66° 8.94° 8.72°
GSA-Gaze(ours) - 9.83° 10.02° 7.62° 8.14°

w/

FSA-Gaze[20] 1000 9.03° 10.54° 7.95° 8.22°
UMA[21] 1000 7.40° 12.65° 7.21° 7.52°

PNP-GA[12] 1000 6.25° 12.90° 6.92° 7.66°
GSA-Gaze(ours) 1000 6.37° 8.95° 6.45° 7.25°

feature representation of target domain data. In addition, in
the G→M task, PNP-GA has the best performance, in other
three tasks, our method outperforms other methods in with-
adaption group. The results support that our methods have
batter generalized gaze estimation capability in both with-
adaption and without-adaption cases.

C. Ablation Analysis

To verify the effectiveness of the proposed generative self-
adversarial learning, we designed three groups of ablation
experiments. The generative self-adversarial learning(GSAL)
mechanism is portable, by adding the reconstruction module
and self-adversarial loss function, we can easily plug the
mechanism into other methods. In group 1, we plug the the
GSAL to Dilated-Net. In group 2, we plug the GSAL to
a gaze regression model based on ResNet-50[14]. In group
3, we remove the adversarial reconstruction module and
the self-adversarial loss in our methods, and use it as the
baseline. The ablation analysis results are shown in Table II.
In all 3 groups and all 4 tasks, the addition of the GSAL
mechanism makes the baseline model show better perfor-
mance, which proves that the proposed GSAL mechanism
can also effectively enhance the domain generalization capa-
bility of other gaze estimation methods. Additionally, GSA-
Gaze shows better performance than ResNet-50 + GSAL, the
backbone of the feature encoder in GSA-Gaze is ResPGC-
50, so the findings also provide evidence that pyramid-
grouped convolution plays a role in mitigating cross-domain
feature over-fitting, thereby enhancing the performance of
generalized gaze estimation.

D. Loss Bias Coefficient Analysis

When optimizing the parameters of the feature encoder in
GSA-Gaze, the loss bias coefficient λ is utilized to adjust
the bias of the model to gaze regression task and image
reconstruction task, as Eq. (7) shows. To study the effect of λ
value to model performance on generalized gaze estimation,
we train the model with different λ values, and perform
cross-domain testing. The results are shown in Fig. 4, as
the value of λ increases, the average angle difference first
decreases and then increases. When λ = 0.6, the model

TABLE II: Ablation analysis results on the domain-
generalized gaze estimation task across Gaze360(G), ETH-
XGaze(E), MPIIGaze(M) and EyeDiap(D).

Methods Gaze angle difference ↓
G→M G→D E→M E→D

Dilated-Net 18.45° 23.88° 10.29° 16.74°
Dilated-Net + GSAL 10.66° 16.48° 10.01° 9.93°

ResNet-50 11.79° 16.79° 10.67° 10.02°
ResNet-50 + GSAL 10.57° 12.69° 7.80° 8.73°

ResPGC-50(ours) 11.25° 14.27° 9.66° 10.39°
GSA-Gaze(ours) 9.83° 10.02° 7.62° 8.14°

exhibits the best performance, when λ is too small or too
large, the model shows a performance drop. The results
are consistent with the anticipated outcome, in extreme
conditions, if λ = 1, the reconstruction loss will be ignored
during training and adversarial learning will not work, the
model is equivalent to the baseline, if λ = 0, the gaze
regression loss will be disregarded, the model will be unable
to perform accurate gaze estimation. Therefore, in the above
experiments in this paper, we set λ to 0.6 to obtain the best
performance.

Framework of generative self-adversarial learning for gaze estimation. The source domain feature space S is the All 

feature containing in the training dataset, the learned feature L is the features that the network can actually learn, and 

G means the general source-independent gaze features.
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Fig. 4: Effect of λ value to model performance on general-
ized gaze estimation. (a) Results of training on Gaze360 and
testing on MPIIGaze and EyeDiap. (b) Results of training
on ETH-XGaze and testing on MPIIGaze and EyeDiap.
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E. Visualized Reconstruction Results

The fundamental principle of generative self-adversarial
learning involves integrating an adversarial image reconstruc-
tion task to compel the model to utilize fewer features for
gaze estimation, thereby reducing feature redundancy and
emphasizing only on general gaze features, thus preventing
cross-domain feature over-fitting. To gain a better under-
standing of the GSAL mechanism, we employ visualizations
to the images reconstructed from the extracted feature maps,
as Fig. 5 shows. The top row displays the original images,
while the bottom row shows the reconstructed images. The
reconstructed images exhibit minimal information regarding
personal characteristics, while retaining the features pertain-
ing to gaze. The decoder tends to reconstruct an image that
resembles an average face, which is very different from the
original image, however, the structural information of the
face and eyes related to the gaze is retained. Specifically, the
reconstructed image in the third column does not retain the il-
lumination characteristics of the original image. In the fourth
column, the glasses in the original image are eliminated
from the extracted features. In the fifth column, the bread
in the original face is removed. These findings demonstrate
the efficacy of GSAL in eliminating domain-specific features
while preserving general gaze characteristics.

O
ri

g
in

al
R

ec
o

n
st

ru
ct

ed

Fig. 5: Visualized reconstruction results. The top row shows
the original images, the bottom row shows the reconstructed
images.

V. CONCLUSION

In this paper, we propose a novel approach for domain
generalization in gaze estimation based on generative self-
adversarial learning. The Experiments results show that the
proposed generative self-adversarial learning method can
effectively guide the model to learn general gaze features
while eliminating the domain-specific features, significantly
enhancing the domain generalization capability of gaze esti-
mation model, which helps advance the application of gaze
estimation in intelligent transportation systems.
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